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The introduction of concurrent design practices to the aerospace industry has greatly increased the 
productivity of engineers and teams during design sessions as demonstrated by JPL’s Team X.  
Simultaneously, advances in computing power have given rise to a host of potent numerical optimization 
methods capable of solving complex multidisciplinary optimization problems containing hundreds of 
variables, constraints, and governing equations.  Unfortunately, such methods are tedious to set up and 
require significant amounts of time and processor power to execute, thus making them unsuitable for rapid 
concurrent engineering use.  This paper proposes a framework for Integration of System-Level Optimization 
with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem 
models.  These approximations are then linked to a system-level optimizer that is capable of reaching a 
solution quickly due to the reduced complexity of the approximations.  The integration structure is described 
in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model.  
Further, a comparison is made between the new framework and traditional concurrent engineering (without 
system optimization) through an experimental trial with two groups of engineers.  Each method is evaluated 
in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level 
optimization, running as a background process during integrated concurrent engineering sessions, is 
potentially advantageous as long as it is judiciously implemented.   

Nomenclature 
    Variables               Abbreviations 
 

Ai = Component surface area (m2)    BB   Black Box 
C = Cost ($)          BLISS  Bi-Level Integrated System Synthesis 
h/R = Cone height : radius ratio     CO   Collaborative Optimization 
κ = Material cost-per-unit-mass ($/kg)   EFT  External Fuel Tank 
L = Cylinder length (m)       GA  Genetic Algorithm 
l = seam length (m)        GM  General Motors  
λ = Seam cost-per-unit-length ($/m)    ICE  Integrated Concurrent Engineering 
Mt = Total tank mass (kg)       ISLOCE Integrated System-Level Opt. for Conc. Eng. 
pn = Nominal tank payload (kg)     MATE  Multi-Attribute Trade Space Exploration 
ρ = Material density (kg/m3)      MDO   Multidisciplinary Design Optimization 
R =  Tank radius (m)        NN  Neural Network 
σ = Component stress (N/m2)     RSM  Response Surface Modeling 
t1 = Cylinder thickness (m) 
t2 = Sphere thickness (m) 
t3 = Cone thickness (m) 
x = Input design vector 
Δv = Change in velocity (m/sec) 
ζ = Vibration factor 
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I. Introduction 

A. Motivation 
 

ULTIDISCIPLINARY Design Optimization (MDO) has made significant progress in helping design and 
optimize complex systems and products over the last two decades1,2. There exist, however, a number of 

obstacles that impede further dissemination of MDO in real product development organizations, particularly at the 
system level. Chief among these impediments is the apparent incompatibility of automated decomposition-based 
system optimizers with established Integrated Concurrent Engineering (ICE) practices. In ICE the highest level 
trades in a system are generally explored and resolved interactively, by human designers, using a variety of linked 
parametric tools (e.g. Excel spreadsheets). In MDO, on the other hand, a system level optimizer automatically seeks 
designs that maximize one or more objectives, while satisfying all inequality, equality and side constraints of the 
problem. Human interaction in traditional MDO is restricted to choosing promising start points or to providing 
preference weights between objectives. Ultimately, one would like to concurrently take advantage of the intuition 
and creativity of human engineers as well as the speed and impartiality of computer-based system optimizers. The 
principal problem that must be overcome is that the actions of one must be prevented from inadvertently overriding 
the actions of the other. The method introduced in this paper, Integrated System-Level Optimization for Concurrent 
Engineering (ISLOCE), solves this problem by letting the human design team and the automated system optimizer 
operate on different – but linked – representations of the same system. The human designers operate on a high-
fidelity parametric representation of the system in the foreground, while the system level optimizer explores a lower 
fidelity approximation of the system in the background. 
 Such a scheme raises a number of questions: How are the fore- and background processes linked together? How 
is the parametric approximation of the subsystems generated? What is the mathematical formulation of such a 
framework? Can one show – in practice – that this is more effective than ICE without the augmentation of system 
optimization? We will provide preliminary answers to these questions after a brief review of the relevant literature. 

B. Background of ICE 
   Integrated concurrent engineering is a collection of practices that attempts to eliminate inefficiencies in 
conceptual design and streamline communication and information sharing among a design team.  Based heavily on 
methods pioneered by JPL’s Team X, concurrent engineering practices have been adopted by major engineering 
company sectors like Boeing’s Integrated Product Teams and GM’s Advanced Technology Design Studio.  Modern 
engineering teams that are well versed in these practices see a significant increase in productivity  (see Figure 1). 

 
Figure 1. Typical ICE environment       Figure 2. Simplified ICEmaker architecture 

 
Traditional design inhibits interdisciplinary trades, not because they are undesirable, but because of a lack of 

communication among subsystem teams. Information is scattered throughout the project team, meaning those 
seeking data on a particular subject have no central location to search.  Engineers thus spend a significant fraction of 
time not developing new information, but rather searching for information that already exists. Integrated concurrent 
engineering (ICE) has emerged as a solution to the major problems associated with aerospace design, including 
complicated interdisciplinary interfaces and inefficient time usage.  Fundamentally, ICE addresses these issues by: 
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• Encouraging communication between subsystem teams 
• Centralizing information storage 
• Providing a universal interface for parameter trading 
• Stimulating multidisciplinary trades 
 
Once an ICE framework is established, inter- and intra-subsystem trades are clearly defined.  This allows teams 

to work independently on problems local to a subsystem and to coordinate effectively on issues that affect other 
teams.  ICE also provides for near-instantaneous propagation of new requirements.  Projects using ICE are more 
flexible and can quickly adapt to changes in top-level requirements.  All these factors together allow engineering 
teams to conduct rapid trades among complex multidisciplinary subsystems.   

C. ICEMaker 
 
Parameter-trading software has become an integral part of ICE teams, allowing users to quickly share 

information and update each other of changes to the design.  This software serves not only as a central server for 
information storage but also as a tool for establishing a consistent naming convention.  Caltech’s Laboratory for 
Spacecraft and Mission Design3 has made several important contributions to the ICE method under the direction of 
Dr. Joel Sercel4. This includes software known as ICEMaker5, which was used as a starting point for this research.  

 
ICEMaker is a parameter exchange tool that runs in Excel and facilitates sharing of information amongst the 

design team, see Fig. 2.  ICEMaker has a single-server / multiple-client interface (Fig. 3).  With ICEMaker, a design 
problem is broken down into modules or subsystems with each module (‘client’) consisting of a series of computer 
models developed by the corresponding subsystem team.  These models are developed offline, a process that can 
take anywhere from a few days to a few months depending on the desired level of model fidelity.  During a design 
session, each client is interactively controlled by a single team representative (‘chair’).  The individual clients are 
linked together via the ICEMaker server (Fig. 2).  Chairs can query the server to either send their latest numbers or 
receive any recent changes made in other clients that affect their work.  The querying process is manual, preventing 
values from being overwritten without permission from the user.  Design sessions using ICEMaker typically last 
three hours and usually address one major trade per design session.  Although it has recently become possible to 
automate this iterative process, human operation of the client stations is almost always preferred.  The human 
element and the ability to catch bugs or nonsensical parameters are crucial to the ICE process.  The necessity of 
keeping humans in the loop will be discussed in greater detail in a later section. 

 

    
ICEMaker Server Functions:  
Maintains parameter list, Adds new clients, Tracks 
‘send’ and ‘receive’ requests, Error notification 

ICEMaker Client Functions: 
Input, Output and Status sheets for each 
subsystem, Link to or performs detailed 
calculations 

Figure 3. (left) ICEMaker server sheet and functions, (right) ICEMaker client sheet and functions 
  
During a design session, the server notes all ‘send’ and ‘receive’ requests made by the clients.  This information 

is time-stamped so that the facilitator can track the progress of an iteration loop and know how recent a set of data is.    
In addition to the input, output and status main sheets, a finished ICEMaker client will also have several user-
designed sheets.  These sheets contain all of the calculations need to process the input data and calculate the output 
data. 



 
American Institute of Aeronautics and Astronautics 

 

4 

D. Improvements to ICEMaker 
 
 While a powerful tool in its own right, attempts have been made to improve upon ICEMaker by 

incorporating automated convergence and optimization routines into the program.  Automatic convergence presents 
no major problems as the routine simply mimics the role of a human operator by querying each of the clients in turn 
and updating the server values published by each client.  Optimization algorithms have proven more difficult to 
implement.  Each module is usually designed with subsystem-level optimization routines built in that are capable of 
producing optimal values for the inputs provided to it based on whatever metrics are desired.  However, even if 
every subsystem is optimized in this way, there is no guarantee that the design is optimized at the system level.  A 
system-level optimizer for ICEMaker has been elusive so far, as the human team would be unable to work on a 
design while the optimizer was running as any values they changed would likely be overwritten by the optimizer as 
it searched for optimal solutions.  Such an optimizer would not be conducive to rapid design and is therefore 
unsuitable for this problem.  It is therefore desirable to develop an optimization method that complements – rather 
than competes with - the concurrent engineering practices currently in use. 

E. Multidisciplinary Optimization 
 
 Multidisciplinary optimization is a formal methodology for finding optimum system-level solutions to 

engineering problems involving many interrelated fields.  This area of research has benefited greatly from advances 
in computing power, and has made possible a proliferation of powerful numerical techniques for attacking 
engineering problems.  Multidisciplinary optimization is ideal for most aerospace design, which traditionally 
requires a large number of interfaces between complex subsystems.   A number of techniques have emerged in an 
attempt to integrate facilitate both system decomposition and optimization. 

 
One such approach, known as collaborative optimization (CO), has been developed by Kroo, Braun and others at 

Stanford University7,8. This approach divides a problem along disciplinary lines into sub-problems that are 
optimized according to system-level metrics of performance through a multidisciplinary coordination process. Each 
sub-problem is optimized so that the difference between the achievable subsystem response and the target variables 
established by the system analyzer is at a minimum. This combination of system optimization with system analysis 
is potent, but leads to setups with high dimensionality. This result can drastically increase the amount of processing 
power needed to run even a simple optimization. CO (like most other distributed methods) is most effective for 
problems with well-defined disciplinary boundaries, a large number of intra-subsystem parameters and calculations, 
and a minimum of interdisciplinary coupling. CO has been successfully applied to a number of different engineering 
problems ranging from vehicle design to bridge construction. 

 
A more recent method, using hierarchical decomposition is bi-level integrated system synthesis (BLISS), 

developed by J. Sobieski, Agte, and Sandusky at the NASA Langley Research Center9,10,11. Like CO, BLISS is a 
process used to optimize distributed engineering systems developed by specialty groups who work concurrently to 
solve a design problem. The main difference with CO is that the quantities handed down from the system level in 
BLISS are not targets, but preference weights that are used for multi-objective optimization at the subsystem level. 
The subsystems in BLISS are called black boxes (BB) – a designation which we will follow here.  Constraints and 
coupling variables are also handled somewhat differently. The system objectives are used as the optimization 
objectives within each of the subsystems and at the system level. These two levels of optimization are coupled by 
the optimum sensitivity derivatives with respect to the design parameters. The design parameters are divided into 
three groupings. So-called X-variables are optimized at the local level and are found only within each of the 
subsystems. Y-variables are those which are output by one subsystem for use in another. Finally, system-level 
design variables are denoted as Z-variables, with system-level denoting variables shared by at least two subsystems.  

 
We will investigate the applicability of CO or BLISS for the background system optimization in future work, but 

restrict ourselves to a traditional, non-hierarchical system optimization here.  

F. Problem Formulation 
 One of the biggest issues in modern design arises from tension between multidisciplinary optimization and 
problem decomposition.  Decomposing a problem into smaller pieces makes the overall problem more tractable, but 
it also makes it more difficult for system-level optimization to make a meaningful contribution.  Linking together a 
number of separate (and often geographically distributed) models is not an easy task.  As the complexity of the 
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various subsystems grows, so too does the size of the model needed to perform the system-level optimization.  For 
aerospace designs, an optimization run can take many days or even weeks to finish.  This introduces a factor of lag 
time into the interaction between the optimization staff and the rest of the design team distances the two groups from 
each other.  This is a major impediment to full integration of MDO in modern product design. While waiting for the 
optimization results to come back, the design team presses on with their work, often updating models and reacting to 
changes in the requirements.  When an optimization does finally produce data, the results are often antiquated by 
these changes.  This is of particular concern for concurrent engineering, which strives to conduct rapid design.  ICE 
teams cannot afford to wait for weeks for optimization data when performing a trade analysis. On a more practical 
level, an integrated engineering team and a computer-based optimizer cannot be allowed to operate on the same 
design vector, x, for fear of overriding each others actions.  Thus, we require a framework to mitigate the 
fundamental conflict between these two approaches throughout the design cycle. 
 
The generic multi-objective system optimization problem formulation is: 
 

Find:    *S
!"x        such that              (1) 

 

( ) ( )* *
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! = < =g x h x      system-level constraints       (4) 
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! !x x x      system-level design vector bounds        (5) 
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L Ug h< = ! !x x x x x         and constraints of each BB   (6) 

 
Here S

i
J  is the i-th System-Level objective and , ,

S S BB
x p y  are vectors of system design variables, system-level 

(fixed) parameters and black box sub-system-level responses, respectively.  

II. � The Integrated System-Level Optimization and Concurrent Engineering (ISLOCE) Method 

G. Overview 
 
The ISLOCE method makes use of an optimizer that operates in the background during design sessions without 

interfering with the work being done by the team members in the foreground (Fig.4).  

 
Figure 4. Architecture of ISLOCE framework 
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The optimizer is initialized before the design session begins and trains a BB approximation12 (e.g. using neural 
networks13) for each subsystem sheet. This network is not as detailed as the client itself, but instead provides an 
approximation of its behavior. Once the approximations are constructed, they are saved and effectively act as 
façades. The optimizer then links them together and runs a heuristic optimization technique (e.g. GA14, SA) on the 
system. As the optimizer is working in the background, the human team runs their own design session as normal, 
periodically referencing the background optimization process for new insights into the problem. As the optimizer 
begins to identify candidate optimal designs, the ICE session facilitator steers the design team towards those points. 
It must be reiterated that this approach is not meant to automatically solve problems but is intended to serve as a 
guide allowing increased session efficiency by quickly eliminating dominated point designs. As the fidelity of the 
clients grows over time, the human team can export the upgrades to the optimizer and update the subsystem 
approximations, leading to more accurate designs and a better understanding of the trade space. An illustration of the 
process is shown in Figure 4.  

A major driver for the approach detailed above is that the mating of the two processes be as transparent as 
possible. ICE and optimization are independently very complex problems already. Any approach that added 
significantly to this complexity would be useless in a modern design environment. Therefore, an overarching 
principle of this approach is to integrate optimization with current ICE practices while minimizing the additional 
work required for either process. 

H. Changes implemented to ICEMaker 
The decision to use approximations of the ICEMaker modules with the system-level optimizer was based on 

previous work in distributed processing by Braun, Kroo, Sobieski and Kodiyalam15. The current scheme is as 
follows: 

1. An Optimization sheet is added to each subsystem client workbook. This sheet is responsible for 
generating the neural network approximation of the subsystem model and passing that data on to the 
system-level optimizer. The only information required from the subsystem chair should be the cell 
references for the inputs, outputs, and internal parameters of the subsystem. Updating the neural 
network during a design session should take as little time as possible (on the order of 5-10 minutes). 

2. An Optimization subsystem is created and linked to the other clients via the ICEMaker server. The 
Optimization client is responsible for collecting the neural network data from the other subsystems. 
Once this data has been assembled, the Optimization client runs a system-level optimizer and generates 
a set of Pareto-optimal designs using the BB approximations. In a non-hierarchical scheme the 
execution sequence of BBs and convergence must be automated. 

 
It should be noted that the Optimization subsystem is not a ‘dummy’ client and requires a skilled human chair 

just like every other subsystem. The operator must be capable of interpreting the optimizer results and passing that 
information, along with his or her recommendations, to the session facilitator. This implementation method should 
minimize the impact of integrating optimization with concurrent engineering.  

I. Neural Network Approximations 
Initial work on the ISLOCE method focused on the code needed to generate the approximations used in the 

background process. Two candidate solutions were response surface mapping (RSM)15 and neural networks13. RSMs 
are easier to code and could be implemented directly in Excel by using Visual Basic macros. Unfortunately, they are 
only well suited to approximate multiple-input/single-output functions. Given that the majority of aerospace project 
clients have multiple outputs to other subsystems, this would require greatly simplifying the models used in the 
clients. Neural networks are much more versatile and can approximate functions with large numbers of both inputs 
and outputs. A neural network consists of layers of neurons, each containing a transfer function and an associated 
weight and bias, see Figure 5. The network is “trained” by presenting it with a series of inputs and corresponding 
outputs. The network attempts to simulate the results presented to it by altering the weights associated with the 
various neurons using least-squares or another minimization routine. If properly trained, a neural network can 
accurately approximate most families of functions. However, they are much more code intensive and cannot be 
easily implemented using Excel alone. 

For these reasons, the Matlab neural network toolbox is used to construct the NNs used in this project13.  
However, this solution requires a way of generating a large amount of training data from the ICEMaker clients in 
Excel and feeding it to Matlab. Exporting the data from Excel and then importing to Matlab is possible, but 
cumbersome. It does not fit with the principle of minimizing additional work for the subsystem chairs. The enabling 
piece of software that solved all of these difficulties and more is appropriately named “Excel Link”. This add-in for 
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Excel allows seamless transfer of matrices between Excel and Matlab. Excel-Link coupled with Visual Basic macros 
allows the generation of data tables and neural networks for any subsystem clients. 
 

  
Figure 6. Sample Neural Network with three layers 

 
The neural network generation scheme was incorporated into the external fuel tank model discussed in Section III, 
to be used in the live trial exercise of Section IV.  
 

 
Figure7. (left) Neural network prediction for Structures BB subsystem of EFT. Total tank mass R~1,  

(right) Neural network prediction for Structures BB subsystem of EFT, Cone stress R~0.91 
 
Figure 7 (left) plots the specific performance of the structures neural network at matching the target value for the 
total tank mass output. The network performs extremely well at this task, with a regression factor of nearly 1. Most 
of the outputs for all of the networks were very near this level. However, there were a few outputs that consistently 
proved problematic to approximate. Figure 7 (right) shows the structures neural network performance at predicting 
cone stress. The regression factor for this output is only about 0.91. This lower level of performance can be 
potentially improved through modification of neural network parameters. On average, the neural networks were able 
to match the values generated by the full-fidelity external fuel tank model extremely well, this is  true especially of 
the cost and aerodynamics subsystems. Some problems generated by mismatches between full fidelity subsystems 
and NN approximations were discovered during the live trials (Section IV), particularly with respect to constraint 
violations. 

J. Genetic Algorithm Optimizer 
 

The genetic algorithm operated by the Optimization chair during design sessions is based on a third-party GA 
toolbox for MATLAB.  A fitness function was developed that penalized individuals both for being dominated and 
for violating constraints. The genetic algorithm code was modified slightly to allow for this type of fitness function  
Once the GA code was developed, the neural networks generated in the previous section were collected and linked 
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to the optimizer. A number of test runs were performed to verify proper GA behavior. Some sample data from the 
trial runs is provided in the figures below. 
 

       
   Fig. 8 Converged GA population for EFT problem   Fig.9 Non-dominated designs extracted from GA 

 
Figure 8 plots the payload-versus-cost performance of all viable (no constraint violation) individuals discovered 

during the GA run of the EFT sample problem (Section IV). A relatively clear Pareto front develops towards the 
lower right corner of the plot. Interestingly, the trade space for viable designs does not appear to be evenly 
distributed, as several thick bands of points can be discerned in the plot. Figure 9 plots the non-dominated 
individuals from the previous chart on a separate graph. The Pareto front is fairly obvious towards the high-payload 
region of the curve, but there is a large gap between the “knee” of the curve and the low-payload region. These gaps 
were frequently found during various GA runs and made it difficult to completely fill in the Pareto front for the EFT 
trade space. The incorporation of restricted mating and other techniques into the GA code could help spread the 
Pareto front out along more uniformly (future work). 

III. � Case Study: STS External Fuel Tank 

K. Model Description 
 

The model used in this study is a simplified version of the Space Shuttle external fuel tank (Fig.10) provided by Dr. 
Jaroslaw Sobieski. It was originally developed as an illustrative tool to demonstrate how changes in a problem’s 
objective function influence the optimal design16. This choice of problem was made for several reasons: 

- The model is based in Excel (as is ICEMaker), allowing easy integration into the desired test environment. 
- The original model could be solved numerically for a variety of objectives using Excel’s Solver routine. 
- There is sufficient complexity in the model to provide a reasonable test of the method’s capabilities  
- Many of the participants were already familiar with the model from previous use.  

 

 
 

Figure 10. (left) Space Transportation System (STS) External Fuel Tank configuration, (right) External 
Fuel Tank (EFT) in front of Vehicle Assembly Building at the NASA Kennedy Spaceflight Center 
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The model divides the tank into three hollow geometric segments: a cylinder (length L, radius R), a 
hemispherical end cap (radius R), and a conical nose (height h, radius R), see Figure 11. These segments have 
thicknesses t1, t2, and t3, respectively. Each segment is assumed to be a monococque shell constructed from 
aluminum and welded together from four separate pieces of material. This results in a total of fourteen seams (four 
seams per segment times three segments plus the seams at the cone/cylinder and cylinder/sphere interfaces). Surface 
areas and volumes are determined using geometric relations, and first principles and rules of thumb are used to 
calculate stresses, vibration modes, aerodynamic drag, and cost. The subsystems are briefly described. 

 
Structures 
Input: six tank dimensions (L, R, t1, t2, t3, h/R) 
Output: component and tank surface areas and volumes, component and tank 

masses, stresses, first vibration mode frequency 
The volume of the tank is held constant to accommodate an equal amount of 

propellant regardless of the tank design and serves as an equality constraint. The 
mass of each component mi is calculated as:  

    
i i i
m At !=               (7) 

where ρ is the density of the material used for the tank (Al). Stresses σi are 
calculated based on the assumed internal pressure of the tank and are measured in 
two directions per component as shown in Figure 11. These calculations result in a 
component equivalent stress given by 

    2 2

1 2 1 2e
! ! ! ! != + "            (8) 

This equivalent stress may not exceed the maximum allowable stress parameter 
set within the model. Together, the three component equivalent stresses serve as 
additional model constraints. A final constraint is placed on the first bending 
moment of the tank. A vibration constraint ζ is calculated which is proportional to 
the tank radius and cylinder thickness and inversely proportional to the mass. 

 
Aerodynamics 
Input: tank radius R and cone height h , surface and cross-sectional areas 
Output: maximum shuttle payload, mp 
The aerodynamics module computes the resulting drag on the tank during flight. 
Cone drag is calculated based on empirical trends according to 

exp 1
h

D b a c
R

! "
= + # $% &' (

           (9) 

where a, b, and c are experimentally determined constants. The drag and surface areas are then compared to nominal 
values for the original tank. The change in available payload is calculated from a weighted linear interpolation of 
these comparisons, by  

p n t
m p M p= ! " + "             (10) 

where pn is the nominal payload, ∆Mt is the deviation in tank mass from the nominal value, and ∆p is the change in 
available payload described above. 
 
Cost 
Input: tank dimensions and component masses 
Output: seam (= welding labor) and material costs 
The cost module uses the tank dimensions set by the structures module to calculate the seam lengths required to 
weld each component. A seam’s cost is dependent upon its length and the thickness of the material being welded. A 
base cost-per-unit-length parameter λ is set within the model and is multiplied by the seam length l and an empirical 
function of the material thickness 

( )seamC l f t!=               (11) 
with the function f given by 

( ) ( ) ( )
2

f t a b t c t= + ! " + ! "          (12) 
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Fig. 11 EFT Model 
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Here, t is the material thickness, ∆ is the weld offset, and a, b, and c are industry-determined constants. For the 
twelve intra-component welds, the thickness t is just the component thickness. The two inter-component welds use 
the average thickness of the two components in the function f(t). The procedure for calculating material costs is 
similar. A base cost-per-unit-mass parameter κ is set within the model. This parameter κ is then multiplied by the 
component mass and another function of thickness. The material cost of all components plus the sum of the seam 
costs calculated above yields the total cost of the tank. 
 
Systems 
Input: tank dimensions, total cost, available shuttle payload 
Output: visual representation of tank, running history of tank designs, Pareto front construction 
The systems module presents a high-level summary of the overall tank design. It does not perform any direct 
calculations but instead helps the team to visualize the current tank and track the team’s progress as it explores the 
trade space.  
 
Optimization (optional) 
Input: neural network data from the three main modules (structures, aerodynamics, cost) 
Output: prediction of expected Pareto front and table of possible Pareto-optimal designs in terms of both their 
performance (payload) and cost as well as their associated design vectors.  
The optimization module is not developed from the original EFT model but is instead an optional add-on to the rest 
of the system. Based on the ISLOCE method, the optimization module compiles the neural network approximations 
of the other subsystems and uses this information to run a system-level optimization of the EFT design. The 
objective vector is chosen to be J = {mp, c}. Eleven constraints are levied on the design space. The first six 
constraints are a set of limits placed on the input vector (side constraints). These constraints limit modification of the 
input variables to a range of values that could be realistically developed in industry. The next restriction is an 
equality constraint on the tank volume (~3000 m3 +/- 100 m3). This constraint creates an interesting dilemma in that 
it is difficult for both humans and heuristic optimization techniques to match such a constraint. In this case, the tank 
volume is dependent upon three parameters (L, R, h/R) meaning that any two parameters can be free while the third 
is dependent upon the others. However, no restriction is placed on which parameter is chosen as dependent. Finally, 
inequality constraints are placed on the maximum allowable component stress and on the first bending moment of 
the tank. The equivalent stress experienced by each component cannot exceed the maximum allowable stress of 
whatever material is used. Also, the first bending moment of the tank must be kept away from the vibrational 
frequencies experienced during launch. 
 

Maximize:  
T

p
J m c! "= # $  such that   ( ) ( )*

      *J J! " =x x x x   subject to        (13) 

 
Design Vector bounds:  

3 3 3 3

1 100 50.5 49.5 0

2.25 9 5.625 3.375 0
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0.1 5 2.55 2.45 0
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Volume constraint: 
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Stress and vibration constraints 
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IV. � ISLOCE Live Trials (Experiments) 

L. Trial Motivation 
 
As mentioned previously, other researchers have developed conceptual design methods similar to the one 

outlined in this paper. While they all differ in their formulation, each has a common goal: to increase the 
productivity and efficiency of engineering teams. As such, any new method proposal would be deficient if it did not 
provide evidence of being able to achieve that goal. It is common practice to demonstrate a process in the context of 
an appropriate test case. This not only serves as a proof-of-concept but also provides a convenient illustration of the 
method in action.  

Satisfactory demonstration of a new method typically involves successful application of the method to a test case 
as described above. However, there is no fixed criterion for what is considered a ‘success’. Previous papers have 
usually chosen to apply their methods to a problem for which an optimal solution is already known. The method is 
then shown to converge to the optimal solution in a reasonable amount of time. If the main purpose of the test is to 
confirm that the method can reach a solution, then this type of experiment is adequate. However, it neglects several 
key factors that are of great importance to the engineering teams that will actually use the method for industry-
related design. Engineering teams are concerned not just with reaching a single optimal solution, but also completely 
exploring a trade space and arriving at a family of optimum solutions that covers the range of multiple objectives. 
Further, time-to-convergence is not as important as ease of setup and use for the design team. A method that is 
cumbersome to setup, use, and modify does not increase the productivity of the team that uses it. These are all 
highly relevant issues that are not addressed by a simple convergence test. The only way to evaluate a method 
accurately according to these metrics is with a live test by actual engineers in a distributed design session. 

M. Trial Objectives 
 
To do this, it is necessary to both evaluate the method itself by comparing the results to more conventional 

design techniques. The well-established principles of the scientific method are applied here by introducing two 
experimental groups. First, a control group uses conventional concurrent engineering practices (with ICEMaker) and 
the model described above to investigate the EFT trade space. The result should be a family of designs that provides 
a baseline level of accuracy and group productivity. Then, a test group investigates the same problem (with no 
knowledge of the control group’s results) by using the full ISLOCE method, i.e. ICEMaker with system 
optimization running in the background. Presumably, the two groups will arrive at different sets of solutions that can 
be compared to each other for accuracy and completeness in terms of defining the trade space and Pareto front. The 
hypothesis to be tested is that the use of background optimization will make the test group more effective relative to 
the control group, given the same amount of time. The design trajectories taken by the groups can also be compared 
and ranked according to the number of designs developed, the ratio of dominated/non-dominated designs, elapsed 
time, etc. After the experiment is run, this information can be collated and analyzed to gain insight into the 
effectiveness of the ISLOCE method and the role of optimization in conceptual design. 
Trial Objectives: The task presented to both groups is identical. Given the EFT model, each group attempts to solve 
the multidisciplinary design optimization problem posed above (Eq.13-16) within a fixed amount of time. The end 
result should be an approximation of the EFT Pareto front with designs that maximize available shuttle payload, mp, 
minimize tank construction costs, c, and satisfy all constraints on volume, stress, and vibration.  The secondary goals 
are those that allow additional insight into the effectiveness of the method used. The ratio of the number of 
dominated to non-dominated solutions gives a feel for how efficiently a method produces solutions that are worth 
investigating further (versus solutions that are dominated and whose discovery represents a waste of time).  

N. Trial Protocol 
The total amount of time allotted for each group was three hours. One hour was spent learning about the EFT model 
and the design tools while the remaining two hours were devoted to the design sessions. The first hour was basically 
the same for both groups in terms of procedure with the major differences emerging later during the sessions 
themselves. The trial introduction was presented with information about the trial purpose and a summary of the task. 
Background information was provided about the external fuel tank and the model to be used during the design 
session. A short description of the module and a simplified N2 chart helped all participants know what information 
each module has as inputs and outputs and demonstrated the overall flow of information. Trial participants were also 
given a short introduction to the use of ICEMaker. The instruction focused on client usage and transferring data with 
the ICEMaker server since this is the primary skill required for the actual task.  
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Table 1. (left) Live Trial Schedule, (middle) control group composition, (right) test group composition 
 
Live Trial Schedule 
 
0:00–0:30 Trial introduction, 
purpose, and objectives 
 
0:30–1:00 ICEMaker tutorial, EFT 
demo, trial goals and procedure 
 
1:00–3:00 Design session and trade 
space exploration (additional design 
session optional) 
 
3:00 on Post-trial debriefing and 
evaluation 

Control Group Composition 
 
 
Systems Engineer 
Structures Chair 
Aerodynamics Chair 
Cost Engineer 

Test Group Composition 
 
 
Systems Engineer 
Structures Chair 
Aerodynamics Chair 
Cost Engineer 
Optimization Chair 

 
Participants were not given full information about the specifics of this research in order to preserve objectivity and 
reduce bias. For example, participants were aware of the existence of other groups but not of other methods. Further, 
no results from the design sessions were shared between the two groups until after the conclusion of both trials. It 
was necessary to explicitly emphasize to both groups that their design sessions should not be treated as a race or 
competition. The last part of the introduction was a trial run through the full procedure so that participants could 
gain a small amount of hands-on experience using the tools before beginning the design session. At the conclusion 
of the first hour, the team was given the green light to begin its independent evaluation of the EFT trade space and 
the clock was started.  
 
Control Group Procedure 
The control group requires four participants, one for each of the four EFT modules (structures, aerodynamics, cost, 
and systems). The procedure for the control group is somewhat simpler than for the optimization group. Without the 
complication of having to generate neural networks and run GAs, the control group design session is simply a 
standard ICEMaker session: 
 1. The structures chair modifies the input vector until he finds one that he or she believes is a good candidate. 
The chair then confirms that the selected vector meets all constraints on volume, stress, and vibration. If it passes, 
then the structures chair outputs his information to the ICEMaker server. If not, then the design vector must be 
tweaked until all constraints are met. 
 2. The aerodynamics and cost chairs request the latest information from the server and examine the effects the 
chosen vector has on their subsystems. In the absence of changes to the internal parameters of the model, these 
chairs’ primary job is to make observations about the results of each change and to try and discern a pattern for what 
leads to a good tank design. This information should feed back to the structures chair after each iteration cycle. Once 
the two chairs have finished making their observations, they output their data to the ICEMaker server. 
 3. The systems chair requests the latest information from the server and adds the new design to the running table 
of discovered solutions. The visual depiction of the current design is automatically updated. The new point is also 
plotted on the performance-versus-cost chart and compared to previous solutions. From this information and the 
input of the other subsystem chairs, a new input vector can be devised and the cycle iterates until the Pareto 
front is well established or time expires. 
 
Optimization Group Procedure 
The optimization group requires five participants. With five participants, the setup is the same as for the control 
group with the extra participant placed in charge of the optimization module. With access to the optimization 
module, the optimization group follows a different procedure for its trial. It consists of a series of nested iterative 
loops: 
1) At the beginning of the design session, the three main EFT modules (structures, aerodynamics, and cost) call up 
the optional optimization sheet within their ICEMaker client and initiate the neural network generation process. This 
takes approximately ten minutes. Once the process is complete, the NN data is saved in a common folder. 
2) At this point, the design team breaks off into the foreground and background processes described in Section II. 
a) The conventional design team (foreground) begins exploring the trade space as described for the control group. 
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b) Simultaneously, the optimization chair (background) collects the neural network data from the EFT model and 
uses the data to initiate a system-level optimization using a genetic algorithm. 
3) Once the GA is finished and post-processing is completed, the optimization chair communicates the results to the 
rest of the team. Predicted Pareto-dominant points are tabulated and provided to the structures chair for evaluation 
using the full EFT model. 
4) Steps 2 and 3 can be repeated. The foreground process investigates the new points discovered by the GA while 
the background process begins a new optimization run using different parameters (possible choices for GA 
parameter modification include population size, number of generations, cross-over probability, and mutation 
probability). Due to the stochastic nature of GAs, this parameter modification frequently results in the discovery of 
other Pareto-dominant solutions and allows the team to explore different parts of the trade space. It is important to 
note that step 1 never needs to be repeated unless some of the internal parameters of the EFT model are changed. 
The time spent generating the neural networks should be seen as a one-time investment that provides the design 
team with information about the trade space at the very beginning of the trial and continues to pay off periodically 
throughout the session. 

O. Evaluation Metrics 
The experimental framework described above as applied to evaluating different design methods is, to the 

author’s knowledge, unique. Previous papers on new design methods certainly demonstrate their power and utility, 
but no direct comparisons using an experimental setup are used. It is usually left to the reader to attempt to quantify 
the differences between the methods, but in the absence of a controlled environment this data is difficult to obtain. 
This paper creates a first-cut attempt at developing such an environment. It is necessary to develop metrics by which 
the ISLOCE method can be compared to conventional design methods. Since no previous trials are available, a 
series of possible performance measures will be described below. Both the metric and the reasoning behind it will be 
given. It is hoped that future design methods will make use of them for their comparisons. 
 
Independent metrics 

These metrics can be used to quantify the stand-alone performance of a design method. 
1. Maximum/minimum objective values – These values (located at the anchor points) come from the designs that 
have the ‘best’ possible value for a single objective, i.e. the global optima. In the EFT model, the key values are 
maximum available payload and minimum cost subject to meeting all constraints (Eq.14-16). 
2. Raw number of point designs – This metric counts the total number of unique viable point designs developed by a 
method. While this gives no information about the quality of point designs (a random input vector generator would 
conceivably have a very high score), it provides a general feel for how long a method takes to create a viable 
solution. Combined with other metrics, this score can be used to determine average process loop time. 
3. Raw number of “Pareto” optimal designs – This metric counts the number of unique point designs that are non-
dominated when compared to all the solutions generated by a method. This metric also requires context to be 
interpreted correctly. It is easy to create a splash of points with a fraction of non-dominant ones among them if none 
of them are close to the true Pareto front. However, this metric serves as a measure of productivity as a method 
explores the trade space. A larger number of predicted non-dominated points means a greater number of points can 
be recommended for higher fidelity examination. 
4. Ratio of dominated to non-dominated designs – This ratio provides a measure of method efficiency. A higher 
ratio implies less time is wasted discovering dominated solutions. 
5. Normalized minimum Pareto front / utopia point distance – Given a spread of point designs, the trade space is 
normalized by placing the anchor points at opposite corners (1,0) and (0,1) with the nadir and utopia points defined 
as (0,0) and (1,1), respectively (for a two-objective maximization problem). This metric is defined as the shortest 
distance between a point design on the Pareto front and the utopia point. The point chosen on the Pareto front must 
be an actual design that satisfies all constraints. 
 
Comparative metrics 

These metrics are best used to compare the relative performance of two different design methods. 
1. Anchor point spread – This metric is given as the range of objective values defined by the anchor points. It is a 
measure of how completely a method explores a trade space within specified side constraints on the design vector. 
2. Ratio of cross-dominated solutions – This metric takes the Pareto front of one method and counts the number of 
dominated Pareto front designs generated by the other method. The ratio of these two counts provides a measure of 
how much more effective one method was over the other in approaching the true Pareto front. A ratio close to 
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one implies both methods are relatively equal in performance (or explored disparate areas of the trade space). A ratio 
far from unity implies one method was significantly better at getting close to the true Pareto front. 
 

P. Trial Results 
 
The live test with the setup and procedures listed above was conducted in May of 2004 in the MIT Department 

of Aeronautics and Astronautics design studio (33-218). Eight MIT Aero/Astro graduate students were recruited to 
participate in the trial. The students were selected based on availability, familiarity with the EFT model, past 
experience with concurrent engineering, knowledge of optimization basics, and personal interest in the project. 
Team assignments were made according to Table 1 (middle, right); individual participants are acknowledged below. 
The control group trial was conducted first, then the optimization group trial a week later. No information about the 
results of the trials was shared between groups until after the conclusion of the second test. The results of the live 
tests will be presented one group at a time and then combined in an additional section for comparative analysis. 

 
Control Group Performance 
 

The control group’s performance set the baseline for evaluation of the ISLOCE method. With no access to 
optimization, the only trade space knowledge the group started with was a single data point: the nominal values of a 
standard tank. The control group’s initial approach was to make small perturbations to the original design vector and 
examine the effects on the tank’s performance. During this stage, most changes were made to the tank’s geometric 
dimensions with only secondary consideration paid to the component thicknesses. The result was a series of designs 
that became progressively cheaper, but could not carry a significant amount of payload due to the added weight from 
excessive material thickness. Later, as the team gained more knowledge of the interaction of various parameters, 
they became more adept at modifying multiple parameters at a time. They learned how to tune the component 
thicknesses to the minimum values allowed by the constraints in order to achieve the lightest design possible for a 
given set of geometric dimensions. This knowledge led them to the high payload/ high cost region of the trade space. 
Towards the end of the design session, the control group progressed back to the nominal design regime and 
completed their exploration of the trade space in the low payload / low cost region. The detailed results of the 
control group’s design trajectory are contained in Appendix A. Note that point 9 is significantly worse than all other 
designs and is not shown on the plot (Fig.14) for scaling reasons. The majority of solutions found by the control 
group are arranged in a fairly linear pattern between the two anchor points. With the exception of two outliers, there 
is very little scattering of points away from the predicted Pareto front. No point was found which dominated the 
nominal (starting) solution.  The performance metrics for the control group are summarized in Table 2. 
 

Table 2 – Control group performance summary 
 

Min/Max objective values max payload = 35,948 kg 
min cost = $449,640 

Number of point designs 
26 viable designs, or roughly 13 per hour 

Number of “optimal” designs 10 non-dominated designs (including the nominal point) 

Ratio of dominated to non-dominated solutions 10/26 or ~ 38% 
Normalized minimum utopia point distance closest Pareto point to utopia: design 19 

(0.538, 0.591) => 0.617 from the point (1,0) 
Anchor point spread payload: {19221,35948} => 16727  

cost: {449640, 567545} => 117905 
 

Optimization Group Performance 
 
The optimization group’s performance benefited significantly from access to optimization through the ISLOCE 
method. Although the team’s progress was somewhat haphazard at times, the overall results were an improvement 
over the baseline established by the control group. The group had no problems with generating the neural networks 
for the optimization chair (Section I) and running genetic algorithms (Section J) during the design session. This 
represented an initial investment and meant that the progress of this group was initially delayed relative to the 
control group. 
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The exploration in parallel by the optimizer and the human team worked as predicted. The optimization chair and 
the rest of the team complimented each other’s work by supplying each other with data on the solutions their 
respective methods developed. Progress for the optimization “group” came in waves as the optimizer provided new 
sets of points for exploration by the rest of the team. Due to the stochastic nature of genetic algorithms, some 
predicted Pareto fronts actually resulted in dominated designs and thus wasted time. However, the GA was also able 
to point the optimization group towards regions of the trade space that the control group did not find. The numerical 
results of the optimization group trial are listed in Appendix B (Fig. 15), in the order in which they were discovered. 
Note that design 28 is much worse than the other designs and is not shown on the plot for scaling reasons. 

The results of the optimization group display a very different pattern from those generated by the control group. 
Whereas the control group’s data showed a linear distribution, the optimization group’s solutions are far more 
scattered across the trade space. This effect is due mainly to the team’s investigation of GA-supplied points that 
turned out to be dominated when evaluated using the full EFT model. In terms of performance, the optimization 
group was able to find points that dominated the nominal point provided at the start of the trial, as well as most of 
the points found by the control group. The performance metrics for the optimization group are summarized in Table 
3. 

Table 3 – Test group performance summary 
 

Min/Max objective values max payload = 37,181 kg 
min cost = $471,825 

Number of point designs 
33 viable designs, or roughly 17 per hour 

Number of optimal designs 7 Pareto designs 

Ratio of dominated to non-dominated solutions 7/33 or ~ 21% 
Normalized minimum utopia point distance closest Pareto point to utopia: design 25 

(0.797, 0.595) => 0.453 from the point (1,0), 
Anchor point spread payload: {20548,37181} => 16633  

cost: {471825, 554732} => 82907 

Q. Combined Results and Interpretation 
 
The combined results of both trials provide a great deal of information, not only on the effectiveness of the two 

methods but also on the benefits and issues associated with using optimization in a concurrent engineering 
environment.  The two primary sources for this information are the combined results of the tradespace exploration 
and the comparison of metrics established in the two trials.  While most of the data gleaned from the trials is 
quantitative, it is equally important to investigate the qualitative data produced by the trials, specifically from 
comments made by participants during the trial.  As will be shown, these less-tangible features of the two 
approaches can significantly contribute to a method’s performance. 
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American Institute of Aeronautics and Astronautics 

 

16 

The combined results of the two trials are shown in Figures 12 and 13, respectively. Figure 12 plots the data 
from Figures 14 and 15 on the same axes for the purpose of direct visual comparison of the regions explored by both 
methods.  In terms of finding near-Pareto optimal designs, the optimization group’s results () can clearly be seen 
to dominate those of the control group () over most regions of the tradespace.  The control group does a slightly 
better job in the low payload / low cost region of the tradespace, but it still has no points that dominate any of the 
points of the optimization group “Pareto” front.  The price the optimization group pays for this increase in 
performance is also visible in the chart.  The optimization group’s points are scattered throughout the tradespace, 
with the vast majority of points dominated by other designs.  This scattering represents ‘wasted’ time and effort by 
the design team, although this time can also be seen as an investment or cost for obtaining higher performing 
solutions. 

 Figure 13 shows the same data as the previous figure, only normalized against the two best anchor points 
found during the trials.  Also shown are points () obtained by running a GA autonomously on the model, offline 
after the human trials. The offline GA found points that dominated those of both groups, but not over the entire trade 
space. The suspected problem is a phenomenon called “niching” where points tend to cluster during multiobjective 
optimization with genetic algorithms. No anchor points could be found that were superior to the ones found by the 
design teams.  The important thing to notice is that the ‘true’ Pareto front is relatively near the one predicted by the 
control group and very near the front predicted by the optimization group.   

 
 The performance of the two groups can be examined further by comparing the methods based on the metrics 

developed earlier.  A summary of this comparison is detailed in Table 4. 
 

Table 4 – Comparison of group design performance 
 Control 

Group 
Test 

Group 
% 

Improvement 
Min/Max objective values    
Maximum payload 35,948 kg 37,181 kg 3.4 
Minimum cost $449,640 $471,825 (- 5.0) 
# of point designs 26 33 26.9 
# of non-dominated designs 10 7 (- 30.0) 
Ratio of dominated to non-
dominated designs 

38% 21% (- 44.7) 

Normalized minimum 
utopia point distance 

   

intra-method 0.617 0.453 26.6 
overall 0.678 0.563 17.0 
Anchor point spread    
payload 16727 16633 (- 0.6) 
cost 117905 82907 (- 29.7) 

 
These results help illustrate in more detail the visual results from Figures 12-15.  The optimization group was 

able to locate the highest payload solution while the control group found the point design with the lowest cost.  The 
scale of these differences is relatively small, but in the aerospace industry, a 3.4% boost in payload or a 5% 
reduction in cost can have a major impact on the viability of a program.  The optimization (=test) group was able to 
develop about 25% more viable point designs than the control group.  The optimization team was able to use many 
points directly from the optimization run while the control group was forced to develop all of their designs 
independently.  However, the majority of these points were poor overall designs.  The control group had nearly 
double the ratio of dominated to non-dominated solutions compared the optimization group.  Much of the 
optimization group’s time was spent evaluating supposedly good points recommended by the GA, only to find that 
most of them were dominated solutions.  The payoff from this ‘wasted’ time however is seen in the next metric.  The 
optimization group did a much better job at pushing their solutions closer to the utopia point.  The best ‘true’ 
minimum distance found during trial post-processing was 0.520, 7% better than the best value found by the 
optimization team.  It should be noted that this best value was the result of a genetic algorithm () with many times 
more individuals and generations than the one run by the optimization team, and consequently ran for hours rather 
than minutes.  Even more impressive is the fact that the optimization team was not even using the full EFT model 
but instead used a series of approximations.  While these results are only from a single test, if the ISLOCE method is 
capable of consistently matching within 10% the performance of a full GA in a fraction of the time, its application in 
industry could lead to a significant increase in the productivity of conceptual design teams. 
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V. � Conclusions 

R. Benefits and Impact 
This paper introduces a new method that attempts to unify multidisciplinary optimization with problem 

decomposition in an integrated concurrent engineering environment.  Known as ISLOCE (for ‘Integrated System-
Level Optimization for Concurrent Engineering’), this method has the potential to put the power of modern system-
level optimization techniques in the hands of engineers working on distributed problems while retaining the speed 
and efficiency of concurrent engineering practices.  

A parallel optimization approach to concurrent engineering could offer great benefits, any large scale project that 
makes use of conceptual design.  Traditionally, optimization has been conducted by a small group of people 
separated from the rest of the design team.  Their models are extremely complex and may take days to run.  The 
results from such a team are useful but are not flexible enough to handle the rapid model changes that often occur 
during concurrent engineering. This might be one of the reasons why full-scale MDO techniques have had difficulty 
being infused into the mainstream design processes of major organizations.   The parallel approach presented here 
brings the optimization team right into the design studio, allowing them to directly impact a design in real time, 
while interacting with non-optimization disciplinary specialists.  The ability to quickly identify a set of interesting 
candidate solutions and guide an engineering team towards them will have a significant impact on the efficiency of 
design sessions. 

 

S. Limitations 
It is important to note that ICEMaker is not an all-in-one automated spacecraft or aircraft generator, nor is it a 

high-end symbolic calculation tool.  It simply serves as a compliment to the ICE method by enabling 
multidisciplinary trades through parameter sharing.  The end designs developed using ICEMaker are only as 
accurate as the models they are based on.  With this in mind, there are many problems that are unsuitable for 
ICEMaker usage in the context of  the framework presented here.  Typically, models for ICEMaker clients are 
developed with Excel or with software that is easily linked to Excel such as Matlab.  CAD or finite-element 
programs are more difficult to interface.  Furthermore, the data that can be transferred through ICEMaker is limited 
to those formats capable of being expressed in an Excel cell, typically real numbers or text strings.  Approximate 
geometry, timelines, and other qualitative information are very difficult to express in this way.  ICEMaker is most 
powerful for tackling highly quantitative problems with well-defined interfaces between subsystems.  Recognizing 
both the potential and the limitations of ICEMaker is essential for proper usage. 

 

T. Future Work 
The work presented here is of a preliminary nature, both in terms of formulation and implementation. Ideally, the 

optimization sheet would be general enough to be included as part of the basic initialization of every ICEMaker 
client from now on. Design teams could use it as needed, but its inclusion in the client would have no effect if 
optimization were not required. We will continue research in parallelism between system optimization and ICE in 
the future. These activities will focus on the following areas: 

 
1. Refinement of optimization client and optimization chair implementations 
2. Comparison of CO, BLISS and ISLOCE for a set of benchmark problems 
3. Application of ISLOCE to an industrial strength problem in a professional organization (e.g. JPL, 

General Motors …) to obtain feedback from professional engineers 
4. Refinement  and test of other background optimizers such as Simulated Annealing or a self-tuning GA  
5. Better computation of GA-generated Pareto Front for EFT case, e.g. via mating restrictions 
6. Repetition of the live trials over a larger set of groups to ascertain the statistical validity of the results 
7. Allow matrix decomposition of systems according to both disciplinary and subsystem dimensions 
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Appendix A – Results obtained by Control Group (ICE without System-Level Optimization) 
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Figure 14. Objective Space Results generated by the control group 

 
Table 5 – Design trajectory for control group 

Design # Payload Cost  Length Radius t_cy t_s t_co h/R 
nominal 30000 $511,424  41.5 4.50 0.0070 0.0080 0.0075 1.0 

1 24688 $500,018  40.0 4.60 0.0070 0.0090 0.0090 0.5 
2 16727 $487,343  30.0 5.20 0.0090 0.0100 0.0100 0.5 
3 16285 $501,558  26.0 5.50 0.0100 0.0100 0.0120 1.0 
4 18205 $466,533  22.0 5.80 0.0090 0.0110 0.0100 1.0 
5 19221 $449,640  20.0 5.90 0.0090 0.0105 0.0095 1.0 
6 15844 $454,868  18.0 6.15 0.0095 0.0110 0.0100 1.0 
7 18475 $471,703  16.0 6.15 0.0095 0.0110 0.0095 2.0 
8 29800 $548,232  45.0 4.25 0.0080 0.0080 0.0070 1.5 
9 2219 $716,579  40.0 4.50 0.0150 0.0150 0.0150 1.5 

10 20204 $624,032  50.0 4.10 0.0100 0.0100 0.0100 1.5 
11 34351 $551,885  50.0 4.10 0.0065 0.0080 0.0065 1.5 
12 33509 $563,704  51.5 4.10 0.0065 0.0080 0.0065 1.5 
13 32409 $535,983  45.0 4.30 0.0070 0.0080 0.0070 1.5 
14 35773 $556,479  45.0 4.20 0.0065 0.0075 0.0065 3.0 
15 35948 $567,545  45.0 4.15 0.0065 0.0075 0.0065 3.6 
16 33712 $542,187  40.0 4.40 0.0070 0.0080 0.0070 3.0 
17 30437 $534,968  35.0 4.70 0.0075 0.0085 0.0075 3.0 
18 27524 $525,780  30.0 5.00 0.0080 0.0090 0.0080 3.0 
19 28216 $497,903  25.0 5.20 0.0080 0.0095 0.0080 3.0 
20 26148 $493,678  22.0 5.40 0.0085 0.0095 0.0085 3.0 
21 26736 $498,049  23.5 5.28 0.0085 0.0095 0.0085 3.0 
22 21344 $508,555  20.0 5.70 0.0090 0.0100 0.0090 3.0 
23 25507 $492,148  21.0 5.48 0.0085 0.0100 0.0085 3.0 
24 21416 $498,273  18.0 5.80 0.0090 0.0105 0.0090 3.0 
25 18093 $495,035  14.0 6.15 0.0095 0.0110 0.0095 3.0 
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Appendix B – Results obtained by Test Group (using ISLOCE method) 
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Figure 15. Objective Space Results generated by the test group 

Table 6 – Design trajectory for test group 
Design # Payload Cost  Length Radius t_cy t_s t_co h/R 
nominal 30000 $511,424  41.5 4.50 0.00700 0.00800 0.00750 1.0 
1 20414 $636,561  50.00 4.10 0.01000 0.01000 0.01000 2.00 
2 28836 $481,042  30.43 5.00 0.00790 0.00890 0.00790 1.54 
3 28709 $485,913  29.70 5.05 0.00790 0.00890 0.00790 1.79 
4 29036 $491,730  30.40 4.99 0.00790 0.00890 0.00790 1.92 
5 27113 $567,546  50.00 4.10 0.00790 0.00890 0.00790 1.00 
6 20132 $568,309  20.00 5.30 0.01000 0.01000 0.01000 5.00 
7 25116 $540,505  20.00 5.30 0.00850 0.00940 0.00850 5.00 
8 23708 $609,920  32.00 4.68 0.00720 0.01000 0.01400 4.97 
9 16566 $624,993  27.50 4.90 0.01000 0.01000 0.01400 4.78 
10 29484 $557,806  32.70 4.70 0.00720 0.00870 0.00910 4.29 
11 27802 $511,695  32.70 4.90 0.00800 0.00870 0.00910 2.00 
12 16026 $598,294  55.00 4.00 0.00800 0.00870 0.01400 0.25 
13 29298 $565,132  30.75 4.67 0.00710 0.00890 0.01000 4.99 
14 29416 $583,020  35.00 4.50 0.00710 0.00890 0.01000 4.99 
15 25626 $559,545  25.00 5.00 0.00800 0.00890 0.01000 4.99 
16 20548 $471,825  25.00 5.50 0.00900 0.01000 0.01000 1.00 
17 24789 $487,696  25.00 5.40 0.00850 0.00950 0.00900 2.00 
18 27432 $481,221  30.58 5.00 0.00780 0.00990 0.01000 1.32 
19 32105 $524,101  38.52 4.60 0.00700 0.00860 0.00700 2.16 
20 33180 $526,384  39.73 4.50 0.00690 0.00860 0.00685 2.23 
21 32918 $553,254  45.00 4.30 0.00690 0.00860 0.00685 2.23 
22 34570 $545,937  45.00 4.30 0.00655 0.00755 0.00655 2.23 
23 32153 $505,230  40.00 4.50 0.00690 0.00800 0.00830 1.30 
24 31151 $511,836  42.00 4.48 0.00680 0.00785 0.00695 1.07 
25 33800 $505,394  40.00 4.47 0.00680 0.00785 0.00695 1.53 
26 37181 $554,732  50.00 4.05 0.00615 0.00710 0.00615 2.10 
27 15173 $549,933  10.00 6.20 0.00940 0.01090 0.00950 5.00 
28 1181 $539,942  10.00 7.00 0.01200 0.01400 0.01400 2.00 
29 22908 $536,792  16.55 5.60 0.00850 0.00980 0.00850 4.97 
30 20304 $559,528  18.43 5.41 0.00820 0.01100 0.01200 4.83 
31 27797 $550,454  44.70 4.30 0.00810 0.00870 0.00880 1.32 
32 26854 $542,026  50.00 4.21 0.00640 0.00820 0.00880 0.51 
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